3.510 \(\int \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)} \, dx\)

Optimal. Leaf size=189 \[ \frac{\left (8 a^2+b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{4 a^{3/2} d}-\frac{\sqrt{a-i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{\sqrt{a+i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 d}-\frac{b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a d} \]

[Out]

((8*a^2 + b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(4*a^(3/2)*d) - (Sqrt[a - I*b]*ArcTanh[Sqrt[a + b*Ta
n[c + d*x]]/Sqrt[a - I*b]])/d - (Sqrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d - (b*Cot[c +
 d*x]*Sqrt[a + b*Tan[c + d*x]])/(4*a*d) - (Cot[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.618679, antiderivative size = 189, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 8, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.348, Rules used = {3568, 3649, 3653, 3539, 3537, 63, 208, 3634} \[ \frac{\left (8 a^2+b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{4 a^{3/2} d}-\frac{\sqrt{a-i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{\sqrt{a+i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 d}-\frac{b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^3*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((8*a^2 + b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]])/(4*a^(3/2)*d) - (Sqrt[a - I*b]*ArcTanh[Sqrt[a + b*Ta
n[c + d*x]]/Sqrt[a - I*b]])/d - (Sqrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]])/d - (b*Cot[c +
 d*x]*Sqrt[a + b*Tan[c + d*x]])/(4*a*d) - (Cot[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]])/(2*d)

Rule 3568

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b*(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n)/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(a^2
+ b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c*(m + 1) - b*d*n - (b*c - a*d)*
(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
 a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[2*m]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[((A*b^2 - a*(b*B - a*C))*(a + b*T
an[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2)), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 3653

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[((c + d*Tan[e + f*x])^n*(1 + Tan[e + f*x]^2))/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3634

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rubi steps

\begin{align*} \int \cot ^3(c+d x) \sqrt{a+b \tan (c+d x)} \, dx &=-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 d}-\frac{1}{2} \int \frac{\cot ^2(c+d x) \left (-\frac{b}{2}+2 a \tan (c+d x)+\frac{3}{2} b \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=-\frac{b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 d}+\frac{\int \frac{\cot (c+d x) \left (\frac{1}{4} \left (-8 a^2-b^2\right )-2 a b \tan (c+d x)-\frac{1}{4} b^2 \tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 a}\\ &=-\frac{b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 d}+\frac{\int \frac{-2 a b+2 a^2 \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx}{2 a}+\frac{\left (-8 a^2-b^2\right ) \int \frac{\cot (c+d x) \left (1+\tan ^2(c+d x)\right )}{\sqrt{a+b \tan (c+d x)}} \, dx}{8 a}\\ &=-\frac{b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 d}+\frac{1}{2} (-i a-b) \int \frac{1+i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx+\frac{1}{2} (i a-b) \int \frac{1-i \tan (c+d x)}{\sqrt{a+b \tan (c+d x)}} \, dx-\frac{\left (8 a^2+b^2\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\tan (c+d x)\right )}{8 a d}\\ &=-\frac{b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 d}+\frac{(a-i b) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 d}+\frac{(a+i b) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 d}-\frac{\left (8 a^2+b^2\right ) \operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{4 a b d}\\ &=\frac{\left (8 a^2+b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{4 a^{3/2} d}-\frac{b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 d}-\frac{(i a-b) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}+\frac{(i a+b) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{b d}\\ &=\frac{\left (8 a^2+b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )}{4 a^{3/2} d}-\frac{\sqrt{a-i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{\sqrt{a+i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d}-\frac{b \cot (c+d x) \sqrt{a+b \tan (c+d x)}}{4 a d}-\frac{\cot ^2(c+d x) \sqrt{a+b \tan (c+d x)}}{2 d}\\ \end{align*}

Mathematica [A]  time = 1.08938, size = 166, normalized size = 0.88 \[ \frac{\left (8 a^2+b^2\right ) \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a}}\right )-\sqrt{a} \left (4 a \sqrt{a-i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )+4 a \sqrt{a+i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )+\cot (c+d x) \sqrt{a+b \tan (c+d x)} (2 a \cot (c+d x)+b)\right )}{4 a^{3/2} d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^3*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

((8*a^2 + b^2)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a]] - Sqrt[a]*(4*a*Sqrt[a - I*b]*ArcTanh[Sqrt[a + b*Tan[c
 + d*x]]/Sqrt[a - I*b]] + 4*a*Sqrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]] + Cot[c + d*x]*(b
+ 2*a*Cot[c + d*x])*Sqrt[a + b*Tan[c + d*x]]))/(4*a^(3/2)*d)

________________________________________________________________________________________

Maple [C]  time = 1.001, size = 45073, normalized size = 238.5 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^3*(a+b*tan(d*x+c))^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 8.10096, size = 9337, normalized size = 49.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/16*(16*sqrt(2)*(a^2*d^5*cos(d*x + c)^2 - a^2*d^5)*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*sqrt
(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4)*arctan(-((a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + (a^3 + a*b^2)
*d^2*sqrt(b^2/d^4) + sqrt(2)*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt((a*cos(d*x +
 c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(3/
4) - sqrt(2)*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4
) - a^2 - b^2)/b^2)*sqrt(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + sqrt(2)*(a*d^3*sqrt((a^2 + b^2)
/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a
*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b
^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*((a^2 + b^2)/d^4)^(3/4))/(a^2*b^2 + b^4)) + 16*sqrt(2)*(a^2*d^5*
cos(d*x + c)^2 - a^2*d^5)*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)
^(3/4)*arctan(((a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + (a^3 + a*b^2)*d^2*sqrt(b^2/d^4) - sqrt(2)
*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*
x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4) + sqrt(2)*(d^7*sqrt(b^2/d
^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*sqrt(((a
^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 +
b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) -
 a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^
2)*cos(d*x + c)))*((a^2 + b^2)/d^4)^(3/4))/(a^2*b^2 + b^4)) - 4*sqrt(2)*((a^4 + a^2*b^2)*d*cos(d*x + c)^2 - (a
^4 + a^2*b^2)*d + (a^3*d^3*cos(d*x + c)^2 - a^3*d^3)*sqrt((a^2 + b^2)/d^4))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4)
 - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + sqrt(2)*(
a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/
cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos
(d*x + c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) + 4*sqrt(2)*((a^4 + a^2*b^2)*d*cos(d*x + c
)^2 - (a^4 + a^2*b^2)*d + (a^3*d^3*cos(d*x + c)^2 - a^3*d^3)*sqrt((a^2 + b^2)/d^4))*sqrt(-(a*d^2*sqrt((a^2 + b
^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - s
qrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*
x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*
b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) - (8*a^4 + 9*a^2*b^2 + b^4 - (8*a^
4 + 9*a^2*b^2 + b^4)*cos(d*x + c)^2)*sqrt(a)*log(-(8*a*b*cos(d*x + c)*sin(d*x + c) + (8*a^2 - b^2)*cos(d*x + c
)^2 + b^2 + 4*(2*a*cos(d*x + c)^2 + b*cos(d*x + c)*sin(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + b*sin(d*x + c)
)/cos(d*x + c)))/(cos(d*x + c)^2 - 1)) + 4*(2*(a^4 + a^2*b^2)*cos(d*x + c)^2 + (a^3*b + a*b^3)*cos(d*x + c)*si
n(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/((a^4 + a^2*b^2)*d*cos(d*x + c)^2 - (a^4 + a
^2*b^2)*d), 1/4*(4*sqrt(2)*(a^2*d^5*cos(d*x + c)^2 - a^2*d^5)*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/
b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4)*arctan(-((a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + (a^3
 + a*b^2)*d^2*sqrt(b^2/d^4) + sqrt(2)*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt((a*
cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)
/d^4)^(3/4) - sqrt(2)*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt(-(a*d^2*sqrt((a^2 +
 b^2)/d^4) - a^2 - b^2)/b^2)*sqrt(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + sqrt(2)*(a*d^3*sqrt((a
^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))
*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos(d*x + c) + (
a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*((a^2 + b^2)/d^4)^(3/4))/(a^2*b^2 + b^4)) + 4*sqrt(2)*(
a^2*d^5*cos(d*x + c)^2 - a^2*d^5)*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b
^2)/d^4)^(3/4)*arctan(((a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + (a^3 + a*b^2)*d^2*sqrt(b^2/d^4) -
 sqrt(2)*(d^7*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt((a*cos(d*x + c) + b*sin(d*x + c)
)/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4) + sqrt(2)*(d^7*sq
rt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + a*d^5*sqrt(b^2/d^4))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*
sqrt(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) +
 (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2
)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c))/((
a^2 + b^2)*cos(d*x + c)))*((a^2 + b^2)/d^4)^(3/4))/(a^2*b^2 + b^4)) - sqrt(2)*((a^4 + a^2*b^2)*d*cos(d*x + c)^
2 - (a^4 + a^2*b^2)*d + (a^3*d^3*cos(d*x + c)^2 - a^3*d^3)*sqrt((a^2 + b^2)/d^4))*sqrt(-(a*d^2*sqrt((a^2 + b^2
)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + sqr
t(2)*(a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*sin(d*x
+ c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3 + a*b^
2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) + sqrt(2)*((a^4 + a^2*b^2)*d*cos(d*x
 + c)^2 - (a^4 + a^2*b^2)*d + (a^3*d^3*cos(d*x + c)^2 - a^3*d^3)*sqrt((a^2 + b^2)/d^4))*sqrt(-(a*d^2*sqrt((a^2
 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log(((a^2 + b^2)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c)
 - sqrt(2)*(a*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^2 + b^2)*d*cos(d*x + c))*sqrt((a*cos(d*x + c) + b*si
n(d*x + c))/cos(d*x + c))*sqrt(-(a*d^2*sqrt((a^2 + b^2)/d^4) - a^2 - b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4) + (a^3
+ a*b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) + (8*a^4 + 9*a^2*b^2 + b^4 - (
8*a^4 + 9*a^2*b^2 + b^4)*cos(d*x + c)^2)*sqrt(-a)*arctan(sqrt(-a)*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d
*x + c))/a) + (2*(a^4 + a^2*b^2)*cos(d*x + c)^2 + (a^3*b + a*b^3)*cos(d*x + c)*sin(d*x + c))*sqrt((a*cos(d*x +
 c) + b*sin(d*x + c))/cos(d*x + c)))/((a^4 + a^2*b^2)*d*cos(d*x + c)^2 - (a^4 + a^2*b^2)*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \tan{\left (c + d x \right )}} \cot ^{3}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**3*(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(c + d*x))*cot(c + d*x)**3, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \tan \left (d x + c\right ) + a} \cot \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(d*x + c) + a)*cot(d*x + c)^3, x)